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Introduction

* An agent 1s learning if it improves its performance on future tasks after
making observations about the world.
* From a collection of input—output pairs, learn a function that predicts the
output for new inputs.
* Why would we want an agent to learn?
(1) the designers cannot anticipate all possible situations
(2) the designers cannot anticipate all changes over time
(3) sometimes human programmers have no idea how to program a

solution themselves
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Supervised Learning

Given a training set of NV example input—output pairs

(3317 yl)a (35'2, y2): . (QZN, yN) )
where each y; was generated by an unknown function y = f(x),
discover a function h that approximates the true function f.

* The function /4 1s a hypothesis. Learning is a search through the space of
possible hypotheses for one that will perform well, even on new examples

beyond the training set.

» To measure the accuracy of a hypothesis we give it a test set of examples that

are distinct from the training set.
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Supervised Learning

* When the output y 1s one of a finite set of values, the learning problem 1s
called classification. When y is a number, the learning problem is called

regression.

 Fitting a function of a single variable to some data points.

J®) J® S f®)
A A
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Figure 18.1 (a) Example (z, f(z)) pairs and a consistent, linear hypothesis. (b) A con-
sistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, which

admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact
sinusoidal fit to the same data set.
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Supervised Learning

* Figure 18.1(b) shows a high-degree polynomial that 1s also consistent with the
same data. This illustrates a fundamental problem 1n inductive learning: how
do we choose from among multiple consistent hypotheses? One answer i1s to
prefer the simplest hypothesis consistent with the data. This principle 1s called
Ockham’s razor.

* Figure 18.1(c) shows a second data set. There 1s no consistent straight line for
this data set; in fact, it requires a degree-6 polynomial for an exact fit. A
straight line that is not consistent with any of the data points, but might

generalize fairly well for unseen values of x, 1s also shown in (¢).
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Supervised Learning

* In general, there 1s a tradeoff between complex hypotheses that
fit the training data well and simpler hypotheses that may
generalize better. In Figure 18.1(d) we expand the hypothesis
space H to allow polynomials over both x and sin(x), and find
that the data 1n (c) can be fitted exactly by a simple function of
the form ax + b + ¢ sm(x). This shows the importance of the

choice of hypothesis space.
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Supervised Learning

* Supervised learning can be done by choosing the hypothesis 4 *

that 1s most probable given the data:

h* = argmax P(h|data)
heH

By Bayes’ rule this 1s equivalent to

h* = argmax P(data|h) P(h)
heH

Then we can say that the prior probability P(%) 1s high for a

degree-1 or -2 polynomial, lower for a degree-7 polynomial.
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Supervised Learning

* There is a tradeoff between the expressiveness of a hypothesis
space and the complexity of finding a good hypothesis within that
space.

 Fitting a straight line to data 1s an easy computation; fitting high-
degree polynomials 1s somewhat harder.

* Most work on learning has focused on simple representations.
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Learning Decision Trees

 We will build a decision tree to decide whether to wait for a table at a

restaurant. The aim here 1s to learn a definition for the goal predicate WillWait.

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant’s price range ($, $3$, $$9).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai, or burger).
10. WaitEstimate: the wait estimated by the host (0—10 minutes, 10-30, 30-60, or >60).
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Learning Decision Trees

Patrons?
None Some Full
E Yes WaitEstimate?
>60 30-60 10-30 0-10
s Alternate? Hungry? Yes
Reservation? Fri/Sat? Yes Alternate?

Nﬂ% No /" \ Yes Nﬂes

Bar? Yes Yes Yes Raining?

No Yes No Yes
Yes Yes
Figure 18.2 A decision tree for deciding whether to wait for a table.




Learning Decision Trees

* An example for a Boolean decision tree consists of an (X, y) pair, where X 1s a
vector of values for the mput attributes, and y 1s a single Boolean output value.
A training set of 12 examples 1s shown in Figure 18.3. The positive examples
are the ones in which the goal WillWait 1s true (X, X3, . . .); the negative

examples are the ones in which it 1s false (x,, x5, . . .).

Input Attributes Goal
Example
Alt | Bar | Fri | Hun| Pat | Price| Rain| Res | Type Est WillWait
X, Yes | No | No | Yes | Some | $$% | No | Yes | French | 0-10 | y, = Yes
X Yes | No | No | Yes | Full $ No | No Thai | 30-60 || y2 = No
X3 No | Yes | No | No | Some $ No | No | Burger | 0-10 ys = Yes
X4 Yes | No | Yes | Yes | Full $ Yes | No Thai 10-30 || y4 = Yes
X5 Yes | No | Yes | No | Full | $$% | No | Yes | French | >60 ys = No
Xg No | Yes | No | Yes | Some | $$ | Yes | Yes | Italian | 0-10 || yg = Yes
X7 No | Yes | No | No | None $ Yes | No | Burger | 0-10 y7 = No
Xg No | No | No | Yes | Some | $$ | Yes | Yes Thai 0-10 || yg = Yes
Xg No | Yes | Yes | No | Full $ Yes | No | Burger | >060 Yo = No
X10 Yes | Yes | Yes | Yes | Full | $3% | No | Yes | [Italian | 10-30 || y190 = No
X11 No | No | No | No | None $ No | No Thai 0-10 || y11 = No
% éz] J_?&‘@f 4 X129 Yes | Yes | Yes | Yes | Full $ No | No | Burger | 30-60 | yi12 = Yes
National Cheng Kung University
Figure 18.3  Examples for the restaurant domain.




Learning Decision Trees

* We want a tree that is consistent with the examples and 1s as small as possible.
* Always test the most important attribute first. By “most important attribute,”
we mean the one that makes the most difference to the classification of an

example.

* Figure 18.4(a) shows that Type 1s a poor attribute, because it leaves us with
four possible outcomes, each of which has the same number of positive as

negative examples.
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Learning Decision Trees

* In (b), we see that Patrons is a fairly important attribute, because if the value is
None or Some, then we are left with example sets for which we can answer
definitively (No and Yes, respectively). If the value 1s Full, we are left with a
mixed set of examples.

* In general, after the first attribute test splits up the examples, each outcome 1s a
new decision tree learning problem in itself, with fewer examples and one less

attribute.
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Learning Decision Trees

1 8 4 6 8 12 1 83 4 6 8 12
258709 H10f11 2547009 H10f11
Type? Patrons?

French Italian None Some Full
1 3 6 8 4 12
7 f11 HHE I

m Yes Hungry?
NcAr’es

4 12

(a) (b)

Figure 18.4  Splitting the examples by testing on attributes. At each node we show the
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type
brings us no nearer to distinguishing between positive and negative examples. (b) Splitting

on Patrons does a good job of separating positive and negative examples. After splitting on
Patrons, Hungry 1s a fairly good second test.




Learning Decision Trees

Patrons?
None Some Full
D Yes Hungry?

No Yes

Yes Fri/Sat? Yes
No Yes

Yes

Figure 18.6  The decision tree induced from the 12-example training set.
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Learning Decision Trees

* Choosing attribute tests

* Entropy is a measure of the uncertainty of a random variable; acquisition
of information corresponds to a reduction in entropy. A random variable
with only one value—a coin that always comes up heads—has no
uncertainty and thus its entropy 1s defined as zero; thus, we gain no
information by observing its value.

» A flip of a fair coin is equally likely to come up heads or tails, 0 or 1, and
we will soon show that this counts as “1 bit” of entropy. The roll of a fair
four-sided die has 2 bits of entropy, because it takes two bits to describe

one of four equally probable choices.
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Learning Decision Trees

* Choosing attribute tests
* The entropy of a random variable V" with values v,, each with probability

P(v,), 1s defined as

Entropy: H(V) =Y P(v)log,
k

1

Plor) S P(vg) logy P(vg)

k

We can check that the entropy of a fair coin flip 1s indeed 1 bat:
H(Fuair) = —(0.5log, 0.5 + 0.51og, 0.5) = 1.

If the coin is loaded to give 99% heads, we get
H(Loaded) = —(0.991og, 0.99 4 0.01log, 0.01) = 0.08 bits.
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Learning Decision Trees

* Choosing attribute tests
* The entropy of a Boolean random variable that is true with probability g:
B(q) = —(qlogy q + (1 — g) logy(1 — q))
« Ifa training set contains p positive examples and #n negative examples,

then the entropy of the goal attribute on the whole set 1s

H(Goal) :B/L\
p+n

* The restaurant training set in Figure 18.3 has p =n = 6, so the
corresponding entropy 1s B(0.5) or exactly 1 bit. A test on a single
attribute 4 might give us only part of this 1 bit. We can measure exactly

how much by looking at the entropy remaining after the attribute test.
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Learning Decision Trees

* Choosing attribute tests

* An attribute 4 with d distinct values divides the training set £ into subsets
E,, ..., E, Each subset E, has p, positive examples and n, negative
examples, so if we go along that branch, we will need an additional
B(p,/(p, + n;)) bits of information to answer the question. A randomly
chosen example from the training set has the kth value for the attribute
with probability (p, + n,)/(p + n), so the expected entropy remaining after
testing attribute A4 is

; Petne p(__Pk
Remainder (A Y e B(5 )

k=1
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Learning Decision Trees

* Choosing attribute tests

* The information gain from the attribute test on A4 1s the expected
reduction in entropy: Gain(A) = B(E%) — Remainder(A)
In fact Gain(A) is just what we need to implement the IMPORTANCE function. Returning to
the attributes considered in Figure 18.4, we have

Gain(Patrons) =1 — [IQ—QB(%) + 1’4—28(%) + %B(%)] ~ (.541 bits,

Gain(Type) =1 — [SB(3) + 3B(3) + 5B(3) + 5 B(%)| = 0 bits,

confirming our intuition that Patrons i1s a better attribute to split on. In fact, Patrons has
the maximum gain of any of the attributes and would be chosen by the decision-tree learning
algorithm as the root.
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Learning Decision Trees

* In many areas of industry and commerce, decision trees are usually the first
method tried when a classification method is to be extracted from a data set.
One important property of decision trees is that it 1s possible for a human to
understand the reason for the output of the learning algorithm. This is a

property not shared by some other representations, such as neural networks.
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Evaluating and Choosing the Best Hypothesis

* We want to learn a hypothesis that fits the future data best. To make that
precise we need to define “future data” and “best.” We make the stationarity
assumption: that there is a probability distribution over examples that remains
stationary over time.

* Each example data point (before we see it) is a random variable E; whose
observed value e; = (x;, ;) is sampled from that distribution, and is
independent of the previous examples:

and each example has an identical prior probability distribution:
P(Ej) = P(Ej1) = P(Ej2) =
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Evaluating and Choosing the Best Hypothesis

* Examples that satisfy these assumptions are called independent and
identically distributed or i.i.d..

» The next step 1s to define “best fit.” We define the error rate of a hypothesis as
the proportion of mistakes it makes—the proportion of times that /(x) # y
for an (x, y) example. A hypothesis / has a low error rate on the training set
does not mean that it will generalize well.

* Randomly split the available data into a training set from which the
learning algorithm produces / and a test set on which the accuracy of /4 1s

evaluated.
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Evaluating and Choosing the Best Hypothesis

* k-fold cross-validation: First we split the data into k& equal subsets. We then
perform & rounds of learning; on each round 1/k of the data is held out as a test
set and the remaining examples are used as training data. The average test set
score of the k£ rounds should then be a better estimate than a single score.

* The extreme 1s k = n, also known as leave-one-out cross-validation or

LOOCYV.
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Evaluating and Choosing the Best Hypothesis

* Users frequently invalidate their results by inadvertently peeking at the test
data. A learning algorithm has various “knobs” (g #t) that can be twiddled to
tune its behavior. The researcher generates hypotheses for various different
settings of the knobs, measures their error rates on the test set, and reports the
error rate of the best hypothesis. Alas, peeking has occurred!

* The reason is that the hypothesis was selected on the basis of its test set error

rate, so information about the test set has leaked into the learning algorithm.
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Evaluating and Choosing the Best Hypothesis

* Peeking 1s a consequence of using test-set performance to both choose a
hypothesis and evaluate it. The way to avoid this is to really hold the test set
out—Ilock it away until you are completely done with learning.

» Ifthe test set is locked away, but you still want to measure performance on
unseen data as a way of selecting a good hypothesis, then divide the available

data (without the test set) into a training set and a validation set.
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Evaluating and Choosing the Best Hypothesis

* Model selection: Complexity versus goodness of fit

* In the polynomial fitting problem, choosing the degree of the polynomial
1s an instance of the problem of model selection.

* Think of the task of finding the best hypothesis as two tasks: model
selection defines the hypothesis space and then optimization finds the
best hypothesis within that space.

* Usually we start with the smallest, simplest models (which probably
underfit the data), and iterate, considering more complex models at each

step, until the models start to overfit.
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Evaluating and Choosing the Best Hypothesis

* Model selection: Complexity versus goodness of fit

60 -
Validation Set Error —+—
Training Set Error ——¢—
50 -
40 A
2
E
= 30 1
E
83
20 -
10 1
O L] L] L] L] L] L] L
1 2 3 4 5 6 7 8 9 10
Tree size
Figure 18.9  Error rates on training data (lower, dashed line) and validation data (upper,
solid line) for different size decision trees. We stop when the training set error rate asymp-
totes, and then choose the tree with minimal error on the validation set; in this case the tree
of size 7 nodes.




Evaluating and Choosing the Best Hypothesis

* From error rates to loss
* In machine learning it is traditional to express utilities by means of a loss
function.
e The loss function L(x,y,y) is defined as the amount of utility lost by
predicting /(x) =y when the correct answer is f(x) =
L(x,y,y) = Utility(result of using y given an input x)
— Utility(result of using ¢ given an input x)
This 1s the most general formulation of the loss function. Often a

simplified version 1s used, L(y,Y).
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Evaluating and Choosing the Best Hypothesis

* From error rates to loss
* Two functions that implement that idea are the absolute value of the
difference (called the L, loss), and the square of the difference (called the
L, loss).
* We can also use the L, loss function, which has a loss of 1 for an

incorrect answer and is appropriate for discrete-valued outputs:

Absolute value loss: Li(y,9) = |y — 7|
Squared error loss:  La(y,9) = (y — 9)?
0/1 loss: Lon(y,9) =0ify =g, else 1
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Evaluating and Choosing the Best Hypothesis

* From error rates to loss
* The learning agent can theoretically maximize its expected utility by
choosing the hypothesis that minimizes expected loss over all input—
output pairs it will see.
[t 1s meaningless to talk about this expectation without defining a prior
probability distribution, P(X, ¥) over examples. Let & be the set of all
possible input—output examples. Then the expected generalization loss for

a hypothesis / (with respect to loss function L) is

GenLossp(h) = >  L(y, h(z)) P(x,y)
(x.u)EE
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Evaluating and Choosing the Best Hypothesis

* From error rates to loss

* The best hypothesis, #*, 1s the one with the minimum expected

generalization loss: 1" = argmin GenLossy, (h)
heH

* Because P(x, y) 1s not known, the learning agent can only estimate

generalization loss with empirical loss on a set of examples, £

EmpLossy E Y L(y,h(z))
( z,y)el
The estimated best hypothesis A* is then the one with minimum empirical loss:

h* = argmin EmpLoss; p(h) .
heH ’
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Evaluating and Choosing the Best Hypothesis

* Regularization
* Search for a hypothesis that directly minimizes the weighted sum of
empirical loss and the complexity of the hypothesis, which we will call

the total cost:
Cost(h) = EmpLoss(h) + XA Complexity(h)
h* = argmin Cost(h) .
heH

We select the value of A that gives us the best validation set score.
* This process of explicitly penalizing complex hypotheses is called

regularization.
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Regression and Classification with Linear
Models

* Univariate linear regression
e A univariate linear function (a straight line) with input x and output y has
the form y = wx + w,, , where w,, and w, are real-valued coeflicients
(weights) to be learned.
* We’ll define w to be the vector [w,, w,], and define
hw(x) =wix + wq
* The task of finding the 4, that best fits these data is called linear

regression.
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Regression and Classification with Linear

Models

* Univariate linear regression

House price in $1000

1000 -
900 1 S
: @o o
800 1 o 7
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@) ©o /"ED
600 1 O~ @0
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500 A /%f’oo Loss
400 {5580
300 0 , "o
500 1000 1500 2000 2500 3000 3500 w
1
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Figure 18.13  (a) Data points of price versus floor space of houses for sale in Berkeley,
CA, in July 2009, along with the linear function hypothesis that minimizes squared error
loss: y = 0.232x + 246. (b) Plot of the loss function Zj(wlxj + wo — yj)2 for various
values of wq, w;. Note that the loss function is convex, with a single global minimum.




Regression and Classification with Linear
Models

* Univariate linear regression
» To fit a line to the data, it is traditional to use the squared loss function, L,,

summed over all the training examples:
N

N
Loss(h Y Lo(y;, hw(x;)) = Yy (y; — hw(fﬁj))z =) (y; — (wr; +w0))2
j=1 j=1 j=1

We would like to find w* = argming, Loss(hy). The sum Z;V: Ly — (wiz; + wp))? is

minimized when its partial derivatives with respect to wg and w; are zero:

9 N

These equations have a unique solution:
N :
wy = (D mjy;) — (2 wg)(zyj) Y yj — ’wl(y z;))/N . (18.3)

N x5) — (3 ;)




Regression and Classification with Linear
Models

* Univariate linear regression
* Many forms of learning involve adjusting weights to minimize a loss.
Consider the weight space—the space defined by all possible settings of
the weights.
* For univariate linear regression, the weight space defined by w, and w; is

two-dimensional, so we can graph the loss as a function of wy and w; in a

3D plot.
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Regression and Classification with Linear
Models

* Univariate linear regression

* To go beyond linear models, we will need to face the fact that the
equations defining minimum loss will often have no closed-form solution.

* Such problems can be addressed by a hill-climbing algorithm that follows

the gradient of the function to be optimized.

W <« any point in the parameter space
loop until convergence do

for each w; in w do

0
(9102'

w; «<— w; — «

Loss(w)
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Regression and Classification with Linear
Models

* Univariate linear regression

W <« any point in the parameter space
loop until convergence do

for each w; in w do
0

8w@-

e The parameter a, which we called the step size in Section 4.2, is usually

W; — W; — Loss(w)

called the learning rate when we are trying to minimize loss in a
learning problem. It can be a fixed constant, or it can decay over time as

the learning process proceeds.
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Regression and Classification with Linear

Models

hw(x) =wix 4+ wq

* Univariate linear regression /
0 0 9
(9'(07; LOSS(W) - 8’102 (y o hw(ﬂf)) /}WD .
0
= 2(y — hw(z)) X D0 (y — hw(x)) /
0
= 2(y — hy(x)) X S (y — (w1 + wy)) , (18.5)
applying this to both wg and w; we get:
iLoss(w) = —2(y — hy(x)); iLoss(w) = —2(y — hy(x)) X =
dwy Owy

Then, plugging this back into Equation (18.4), and folding the 2 into the unspecified learning
rate «, we get the following learning rule for the weights:

wy — wo + a(y — hw(x)); wy «—wy+a(y— hy(z)) X

These updates make intuitive sense: if hy(x) > v, i.c., the output of the hypothesis is too
large, reduce wq a bit, and reduce w; if x was a positive input but increase wy if x was a
negative input.




Regression and Classification with Linear
Models

* Univariate linear regression
* For N training examples, we want to minimize the sum of the individual
losses for each example. The derivative of a sum 1s the sum of the

derivatives, so we have:

wo — wo +a Y (yj — hw(xj)); w1 «— w1+ ad) (y; — hw(xj;)) X x;
J J

These updates constitute the batch gradient descent learning rule for

univariate linear regression.
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Regression and Classification with Linear
Models

* Univariate linear regression
* Stochastic gradient descent (SGD): It randomly selects a small number
of training examples at each time step, and updates according to Equation
(18.5).
* SGD 1s widely applied to models other than linear regression, in particular

neural networks.
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Regression and Classification with Linear
Models

* Multivariate linear regression
* We can easily extend to multivariate linear regression problems, in

which each example x; is an n-element vector.

hsw(xj) = Wo + W1T ;1 R WnTjp = W o Y W;Tj

)
* Then /4 1s simply the dot product of the weights and the input vector

hsw(Xj) = W - X; —w' Xj = Y Wil
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Regression and Classification with Linear
Models

* Multivariate linear regression
* The best vector of weights, w*, minimizes squared-error loss over the

examples: W' = a,rgminv La(yj, W+ X;)

W .
v

* Gradient descent will reach the (unique) minimum of the loss function;

the update equation for each weight w, 1s

w; — wW; +« Y ﬂfj,z‘(yj — hw(xj))
J
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Regression and Classification with Linear
Models

* Multivariate linear regression

It is also possible to solve analytically for the w that minimizes loss. Let y be the vector of
outputs for the training examples, and X be the data matrix, i.e., the matrix of inputs with
one n-dimensional example per row. Then the solution

w* — (XTx)—ley
minimizes the squared error.
It is common to use regularization on multivariate linear functions to
avoid overfitting. Recall that with regularization we minimize the total
cost of a hypothesis, counting both the empirical loss and the complexity

of the hypothesis: Cost(h) = EmpLoss(h) + A Complezity(h)
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Regression and Classification with Linear
Models

* Multivariate linear regression

* For linear functions the complexity can be specified as a function of the
weights.
. Complezity (hy) = Lo(w) = > |w;|?

* With g = 1 we have L, regularization, which minimizes the sum of the
absolute values; with g = 2, L, regularization minimizes the sum of
squares. Which regularization function should you pick? That depends on
the specific problem, but L, regularization has an important advantage: it

tends to produce a sparse model.
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Regression and Classification with Linear
Models

* Linear classifiers with a hard threshold
* Linear functions can be used to do classification as well as regression.
* (iven these training data, the task of classification 1s to learn a hypothesis
h that will take new (x, , x, ) points and return either O for earthquakes or

1 for explosions.

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty




Regression and Classification with Linear
Models

e Linear classifiers with a hard threshold
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Figure 18.15

(a) Plot of two seismic data parameters, body wave magnitude x; and sur-
face wave magnitude x2, for earthquakes (white circles) and nuclear explosions (black cir-
cles) occurring between 1982 and 1990 in Asia and the Middle East (Kebeasy et al., 1998).
Also shown is a decision boundary between the classes. (b) The same domain with more data
points. The earthquakes and explosions are no longer linearly separable.




Regression and Classification with Linear
Models

* Linear classifiers with a hard threshold
* A decision boundary is a line (or a surface, in higher dimensions) that
separates the two classes. In Figure 18.15(a), the decision boundary is a
straight line. A linear decision boundary is called a linear separator and
data that admit such a separator are called linearly separable.

ro =171 —49 or —49+17x1 —29=0.

The explosions, which we want to classify with value 1, are to the right of this line with higher
values of z1 and lower values of z2, so they are points for which —4.9 + 1.7z; — x5 > 0,
while earthquakes have —4.9 4+ 1.7z1 — 29 < 0. Using the convention of a dummy input
xo = 1, we can write the classification hypothesis as

hw(x) = 1if w-x > 0 and 0 otherwise.
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Regression and Classification with Linear
Models

* Linear classifiers with a hard threshold

* Alternatively, we can think of / as the result of passing the linear function

w - X through a threshold function:
hw(x) = Threshold(w - x) where Threshold(z)=1if z > 0 and 0 otherwise.

* There is a simple weight update rule that converges to a solution provided

the data are linearly separable. For a single example (x, y), we have
w; — w; + a(y — hy(x)) X ; (18.7)

which 1s essentially identical to the update rule for linear regression. This

rule 1s called the perceptron learning rule.
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Regression and Classification with Linear
Models

e Linear classifiers with a hard threshold

Because we are considering a 0/1 classification problem, however, the behavior is somewhat
different. Both the true value y and the hypothesis output Ay (x) are either O or 1, so there are
three possibilities:

e If the output is correct, i.e., y = hy(X), then the weights are not changed.

o If yis 1 but hy(x) is 0, then wj is increased when the corresponding input z; is positive
and decreased when x; i1s negative. This makes sense, because we want to make w - x
bigger so that hy(x) outputs a 1.

e Ifyis 0 but hy(x) is 1, then wj; is decreased when the corresponding input z; is positive
and increased when x; 1s negative. This makes sense, because we want to make w - x
smaller so that Ay (xX) outputs a 0.

w; — w; +a(y — hy(X)) X x;
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Regression and Classification with Linear
Models

* The perceptron rule may not converge to a stable solution for fixed learning

rate.

1 1
5 0.9 A1 8 0.9 54
2 e 2
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Number of weight updates Number of weight updates Number of weight updates
(a) (b) (c)

Figure 18.16 (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Fig-
ure 18.15(a). (b) The same plot for the noisy, non-separable data in Figure 18.15(b); note
the change in scale of the x-axis. (c) The same plot as in (b), with a learning rate schedule
a(t) =1000/(1000 + t).




Regression and Classification with Linear
Models

* Linear classification with logistic regression
» The linear classifier always announces a completely confident prediction
of 1 or 0, even for examples that are very close to the boundary; in many
situations, we really need more gradated predictions.
» All of these issues can be resolved to a large extent by softening the
threshold function— approximating the hard threshold with a continuous,

differentiable function.
1

1+e %

* The logistic function Logistic(z) =
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Regression and Classification with Linear
Models

* Linear classification with logistic regression

0.5 1 0.5 1

0 - 0 - ——
8-6-4-202 46 8 6 -4 -2 0 2 4 6

(a) (b) (c)

Figure 18.17 (a) The hard threshold function Threshold(z) with 0/1 output. Note

that the function is nondifferentiable at z=0. (b) The logistic function, Logistic(z) =
L Iso k the sigmoid function. (c) Plot of a logistic regression hypothesis

7= also known as g g g yp

hw(x) = Logistic(w - x) for the data shown in Figure 18.15(b).




Regression and Classification with Linear
Models

* Linear classification with logistic regression

*  With the logistic function replacing the threshold function, we now have
1

1l +e WX

hw(X) = Logistic(w - X) =

An example of such a hypothesis for the two-input earthquake/explosion
problem 1s shown in Figure 18.17(c).

* The process of fitting the weights of this model to minimize loss on a data

set 1s called logistic regression.
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Regression and Classification with Linear
Models

* Linear classification with logistic regression

For a single example (x,y), the derivation of the gradient is the same as for linear
regression (Equation (18.5)) up to the point where the actual form of h is inserted. (For this
derivation, we will need the chain rule: dg(f(x))/0x= ¢ (f(x))0f(x)/0x.) We have

0 0 5 1
— — hw(x) = Logistic(w - X) =
9w, Loss(w) ) (y — hw(X)) (%) = Logistic(w - X) = ;=
0
— 2y~ h(X)) X 5y~ h(x))
, 0
= —2(y — hw(x)) X g (W-X) X awz’w-x

= —2(y — hw(x)) X ¢'(W-X) X ;.
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Regression and Classification with Linear
Models

* Linear classification with logistic regression

The derivative ¢ of the logistic function satisfies ¢'(z) = g(z)(1 — g(2)), so we have

g'(w-x) =g(w-x)(1 = g(w:x)) = hy(x)(1 = hy(x))

so the weight update for minimizing the loss 1s

w; — w; + a(y — hyw(X)) X hy(X)(1 — hy(X)) X 2; . (18.8)
I
I N ‘ " I I
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(a) (b) (c)
Figure 18.18 Repeat of the experiments in Figure 18.16 using logistic regression and
squared error. The plot in (a) covers 5000 iterations rather than 1000, while (b) and (c¢) use
the same scale.




Nonparametric Models

* Linear regression use the training data to estimate a fixed set of parameters w.
That defines our hypothesis /£,,(x), and at that point we can throw away the
training data, because they are all summarized by w. A learning model that
summarizes data with a set of parameters of fixed size is called a parametric
model.

* A nonparametric model is one that cannot be characterized by a bounded set
of parameters. For example, suppose that each hypothesis we generate simply
retains within itself all of the training examples and uses all of them to predict

the next example.
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Nonparametric Models

* Nearest neighbor models

* Given a query x,, find the k£ examples that are nearest to x,. This 1s called
k-nearest neighbors lookup. We’ll use the notation NN(k, x,) to denote the
set of k& nearest neighbors.

* To do classification, first find NN(%, x,), then take the plurality vote of the
neighbors (which is the majority vote in the case of binary classification).
To avoid ties, k is always chosen to be an odd number.

* To do regression, we can take the mean or median of the & neighbors, or

we can solve a linear regression problem on the neighbors.
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Nonparametric Models

* Nearest neighbor models

(k=1) (k=05)

Figure 18.26  (a) A k-nearest-neighbor model showing the extent of the explosion class for
the data in Figure 18.15, with £ =1. Overfitting is apparent. (b) With k£ = 5, the overfitting
problem goes away for this data set.




Nonparametric Models

* Nearest neighbor models
* Nonparametric methods are still subject to underfitting and overfitting,
just like parametric methods. In this case 1-nearest neighbors is overfitting;
it reacts too much to the black outlier in the upper right and the white
outlier at (5.4, 3.7). The 5-nearest-neighbors decision boundary 1s good;
higher k£ would underfit. As usual, cross-validation can be used to select

the best value of £.
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Nonparametric Models

* Nearest neighbor models

* The word “nearest” implies a distance metric. How do we measure the
distance from a query point x, to an example point x;? Typically, distances
are measured with a Minkowski distance or L? norm, defined as

LP(xj,%g) = () |aji — wqilP) /7

With p = 2 this 1s Euclidean digtance and with p = 1 it 1s Manhattan
distance.

« With Boolean attribute values, the number of attributes on which the two

points differ is called the Hamming distance.
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Nonparametric Models

* Nearest neighbor models

» The total distance will be affected by a change in scale in any dimension.
If we change dimension i from centimeters to miles while keeping the
other dimensions the same, we’ll get different nearest neighbors.

* [t 1s common to apply normalization to the measurements in each
dimension. One simple approach is to compute the mean u; and standard
deviation g; of the values in each dimension, and rescale them so that x; ,
becomes (x;; — ;)/o;.

* A more complex metric known as the Mahalanobis distance takes into

account the covariance between dimensions.
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Nonparametric Models

* Curse of dimensionality

* In low-dimensional spaces with plenty of data, nearest neighbors works
very well. However, it’s not in high-dimensional spaces!

* Consider k-nearest-neighbors on a data set of NV points uniformly
distributed throughout the mterior of an n-dimensional unit hypercube.
The k-neighborhood of a point is the smallest hypercube that contains the
k-nearest neighbors. Let £ be the average side length of a neighborhood.
Then the volume of the neighborhood (which contains & points) is " and
the volume of the full cube (which contains N points) is 1. So, on

average, ¢" = k/N. Taking nth roots of both sides we get ¢ = (k/N)'"".
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Nonparametric Models

* Curse of dimensionality

* To be concrete, let =10 and N=1,000,000. In two dimensions (#=2; a unit
square), the average neighborhood has # = 0.003, a small fraction of the
unit square, and in 3 dimensions ¢ is just 2% of the edge length of the
unit cube. But by the time we get to 17 dimensions, £ 1s half the edge
length of the unit hypercube, and in 200 dimensions it 1s 94%. This

problem has been called the curse of dimensionality.
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Nonparametric Models

* Finding nearest neighbors with k-d trees

* A balanced binary tree over data with an arbitrary number of dimensions
1s called a k-d tree, for k-dimensional tree.

* To construct a k-d tree, we start with a set of examples and at the root
node we split them along the ith dimension by testing whether x, < m. We
chose the value m to be the median of the examples along the ith
dimension; thus half the examples will be 1n the left branch of the tree and
half in the right. We then recursively make a tree for the left and right sets

of examples, stopping when there are fewer than two examples left.
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Nonparametric Models

* Finding nearest neighbors with k-d trees
* k-d trees are appropriate only when there are many more examples than
dimensions, preferably at least 2” examples. Thus, k-d trees work well
with up to 10 dimensions with thousands of examples or up to 20
dimensions with millions of examples. If we don’t have enough examples,

lookup is no faster than a linear scan of the entire data set.
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Nonparametric Models

* Locality-sensitive hashing
* Hash tables have the potential to provide even faster lookup than binary
trees. Hash codes randomly distribute values among the bins, but we want
to have near points grouped together in the same bin; we want a locality-

sensitive hash (LSH).
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Nonparametric Models

* Locality-sensitive hashing

* Approximate near-neighbors problem: Given a data set of example
points and a query point x,, find, with high probability, an example point
(or points) that is near x,,.

* To be more precise, we require that if there 1s a point x; that is within a
radius r of x, then with high probability the algorithm will find a point x;;
that is within distance cr of x,. If there is no point within radius r then the
algorithm 1s allowed to report failure. The values of ¢ and “high

probability” are parameters of the algorithm.
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Nonparametric Models

* Locality-sensitive hashing
* We need a hash function g(x) that has the property that, for any two
points x; and x;., the probability that they have the same hash code
1s small if their distance 1s more than cr, and 1s high if their

distance 1s less than 7.
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Nonparametric Models

* Locality-sensitive hashing
* The trick of LSH is to create multiple random projections and combine
them. A random projection 1s just a random subset of the bit-string
representation. We choose ¢ different random projections and create ¢
hash tables, 81(X),82(X),...,8,(X). We then enter all the examples into
each hash table. Then when given a query point x , we fetch the set of
points in bin g;(q) for each &, and union these sets together into a set of

candidate points, C.
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Nonparametric Models

* Locality-sensitive hashing

* Then we compute the actual distance to x,, for each of the points in C and
return the k& closest points. With high probability, each of the points that
are near to x, will show up in at least one of the bins.

* With large real-world problems, such as finding the near neighbors in a
data set of 13 million Web images using 512 dimensions, locality-
sensitive hashing needs to examine only a few thousand images out of 13
million to find nearest neighbors; a thousand-fold speedup over

exhaustive or k-d tree approaches.
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Nonparametric Models

* Nonparametric

regression

oQ 2 g2 %

National Cheng Kung University

8 ® 8 ; o
[ b ol
6 1 2 ! MG“‘?-NG,-@—-G? 6 1 @ i 0'—9—._6__9‘0
5 1 [ e \ 5 1 o © L
4 \ 4 -
34 e/ o 3{ ol o T
P \ o
21 2 {7
1 ¢ ® 1] o °
0 T 0 r
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) (b)
8 o 8 )
7 N 7
6 o °e B0 O 6 © - P"a“m»\Q o ©
5 jo'e N 5 27
4 fr.r" !;" ' I\Ll 4 ; 4 *y
3 of 8 3 0 o,
IG \.\ ,( O \\
21 21/
1 {0 t{ 14 4 o
0 . — o L .
0 2 4 6 8 10 12 14 0 2 4 [} 8 10 12 14
(©) (d)

Figure 18.28  Nonparametric regression models: (a) connect the dots, (b) 3-nearest neigh-
bors average, (c) 3-nearest-neighbors linear regression, (d) locally weighted regression with

a quadratic kernel of width k£ = 10.




Nonparametric Models

* Nonparametric regression
(a) When noise 1s low, this trivial method 1s actually not too bad. But
when the data are noisy, the resulting function is spiky, and does not
generalize well.
* (b) k-nearest-neighbors regression (Figure 18.28(b)) improves on
connect-the-dots. Instead of using just the two examples to the left and
right of a query point x,, we use the & nearest neighbors (here 3). we have

the k-nearest-neighbors average: /(x) is the mean value of the & points,

2. vk
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Nonparametric Models

* Nonparametric regression
(c) k-nearest-neighbors linear regression (Figure 18.28(c)) finds the
best line through the k& examples. This does a better job of capturing trends
at the outliers, but is still discontinuous.

* (d) Locally weighted regression (Figure 18.28(d)) gives us the
advantages of nearest neighbors, without the discontinuities. The idea of
locally weighted regression is that at each query point x , the examples
that are close to x, are weighted heavily, and the examples that are farther
away are weighted less heavily or not at all. The decrease in weight over

distance 1s always gradual, not sudden.
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Nonparametric Models

* Nonparametric regression
* We decide how much to weight each example with a function known as a
kernel. A kemnel function looks like a bump; in Figure 18.29 we see the

specific kernel used to generate Figure 18.28(d).

0.5 1

-10 -5 0 5 10

Figure 18.29 A quadratic kemel, K(d) = max(0,1 — (2|z|/k)?), with kernel width

k = 10, centered on the query point z = 0.




Nonparametric Models

* Nonparametric regression

Doing locally weighted regression with kernels is now straightforward. For a given
query point X, we solve the following weighted regression problem using gradient descent:
w* = argmin Y K(Distance(x4,X;)) (y; — W -X;)?,
W .
J
where Distance is any of the distance metrics discussed for nearest neighbors. Then the
answer is h(X,) =w" - X,.
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Support Vector Machines

* In the early 2000s, the support vector machines (SVM) model class was the
most popular approach for “off-the-shelf” supervised learning, for when you
don’t have any specialized prior knowledge about a domain.

* SVMs construct a maximum margin separator

* SVMs create a linear separating hyperplane, but they have the ability to
embed the data into a higher-dimensional space, using the so-called
kernel trick.

* SVMs are a nonparametric method
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Support Vector Machines

(a) (b)

Figure 18.30  Support vector machine classification: (a) Two classes of points (black and
white circles) and three candidate linear separators. (b) The maximum margin separator
(heavy line), is at the midpoint of the margin (area between dashed lines). The support
vectors (points with large circles) are the examples closest to the separator.




Support Vector Machines

* In Figure 18.30(a), we have a binary classification problem with three
candidate decision boundaries, each a linear separator. Each of them 1s
consistent with all the examples, so from the point of view of 0/1 loss, each
would be equally good.

* Logistic regression would find some separating line; the exact location of the
line depends on all the example points. The key insight of SVMs 1s that some
examples are more important than others, and that paying attention to

them can lead to better generalization.
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Support Vector Machines

* SVMs address this issue: Instead of minimizing expected empirical loss on the
training data, SVMs attempt to minimize expected generalization loss.

* We call this separator, shown in Figure 18.30(b) the maximum margin
separator. The margin is the width of the area bounded by dashed lines in the
figure—twice the distance from the separator to the nearest example point.

* How do we find this separator?
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Support Vector Machines

* The separator 1s defined as the set of points {x : w - x + 5=0}. We could search
the space of w and b with gradient descent to find the parameters that
maximize the margin while correctly classifying all the examples.

* We don’t directly solve it, but turns it into the dual representation. The optimal
solution 1s found by solving

argglaxy Qaj — %Y 0 Y Yk (X5 - X (18.13)
J 7,k

subject to the constraints av; > 0 and ), a;y; =0
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Support Vector Machines

* This 1s a quadratic programming optimization problem.
* Once we have found the vector a we can get back to w with the
equation W= Y _ ;j @jX; , or we can stay in the dual representation.
* There are three important properties of Equation (18.13). First, the expression

1s convex; it has a single global maximum that can be found efficiently.
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Support Vector Machines

* Second, the data enter the expression only in the form of dot products of pairs
of points. This second property 1s also true of the equation for the separator

itself; once the optimal a; have been calculated, it 1s
h(x) = sign (Z oy (X - Xj) — b)
J

* A final important property 1s that the weights ¢, associated with each data
point are zero except for the support vectors—the points closest to the
separator. Because there are usually many fewer support vectors than

examples, SVMs gain some of the advantages of parametric models.
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Support Vector Machines

* What if the examples are not linearly separable?

(a) (b)

Figure 18.31 (a) A two-dimensional training set with positive examples as black cir-
cles and negative examples as white circles. The true decision boundary, 22 + 72 < 1,
is also shown. (b) The same data after mapping into a three-dimensional input space
é;] S %\}0 7@,\12) (2%, 23, +/2z122). The circular decision boundary in (a) becomes a linear decision boundary

7™ National Cheng Kung University in three dimensions. Figure 18.30(b) gives a closeup of the separator in (b).




Support Vector Machines

* Clearly, there 1s no linear separator for Fig. 18.31(a). Now, suppose we map
each input vector x to a new vector of feature values, F(x). In particular, let us
use the three features

fi=zi,  fo=23,  f3=V2z139

* Figure 18.31(b) shows the data in the new, three-dimensional space defined by
the three features; the data are linearly separable in this space! If data are
mapped into a space of sufficiently high dimension, then they will almost
always be linearly separable. In general (with some special cases excepted) if
we have N data points then they will always be separable in spaces of N — 1

dimensions or more.
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Support Vector Machines

* Now, we would not usually expect to find a linear separator in the input space
X, but we can find linear separators in the high-dimensional feature space F(x)
simply by replacing x;-x, in Equation(18.13) with F(x;) F(x,).

* It turns out that F(x;)F(x;) can often be computed without first computing ¥
for each point. In our three-dimensional feature space defined by Equation
(18.15), a little bit of algebra shows that

F(x;) - F(xz) = (% x3)?
(That’s why the V2 is in £3.) X; = (X1 5% ) F(x)) = (xf,j, x22,j, \/Exl’sz,j)
X = (X)) Fe) = O 40 X340V 201 120

2 2 )
X g X5 X5+ 2X0 X)X X )

2
(xj X)) = X ;
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Support Vector Machines

* The expression (x;'X;)? is called a kernel function, and is usually written as
K(x;,x;). The kernel function can be applied to pairs of input data to evaluate
dot products in some corresponding feature space. So, we can find linear
separators in the higher-dimensional feature space F(x) simply by replacing
X; X, in Equation (18.13) with a kernel function K(x;,x,). Thus, we can learn in
the higher-dimensional space, but we compute only kernel functions rather
than the full list of features for each data point.

» Other kernel functions: K (x;,xz) = (1 + X, - X )?
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Support Vector Machines

* Kernel trick: Plugging these kernels into Equation (18.13), optimal linear
separators can be found efficiently in feature spaces with billions of (or, in
some cases, infinitely many) dimensions. The resulting linear separators, when
mapped back to the original input space, can correspond to arbitrarily wiggly,

nonlinear decision boundaries between the positive and negative examples.
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Ensemble Learning

* The idea of ensemble learning methods 1s to select a collection, or ensemble,
of hypotheses from the hypothesis space and combine their predictions.

* For example, during cross-validation we might generate twenty different
decision trees, and have them vote on the best classification for a new example.

* Consider an ensemble of K = 5 hypotheses and suppose that we combine their
predictions using simple majority voting. For the ensemble to misclassify a
new example, at least three of the five hypotheses have to misclassify it. The
hope is that this 1s much less likely than a misclassification by a single

hypothesis.
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Ensemble Learning

* Another way to think about the ensemble 1dea 1s as a generic way of enlarging
the hypothesis space. That 1s, think of the ensemble itself as a hypothesis and
the new hypothesis space as the set of all possible ensembles constructable

from hypotheses in the original space.

Figure 18.32  Illustration of the increased expressive power obtained by ensemble learn-
ing. We take three linear threshold hypotheses, each of which classifies positively on the
% é&] 52 ?&}0% 7 unshaded side, and classify as positive any example classified positively by all three. The

National Cheng Kung University resulting triangular region is a hypothesis not expressible in the original hypothesis space.




Ensemble Learning -- Bagging

* We generate K distinct training sets by sampling with replacement from the
original training set. We then run our machine learning algorithm on a training
set to get hypothesis. Repeat this process K times, getting K different

hypotheses. For classification, taking the majority vote. For regression, the

. 1 <
final output 1s the average p(x)=— Y h(x
(%) X Z, {(X)

* Bagging tends to reduce variance and 1s a standard approach when there 1s

limited data or when the base model is seen to be overfitting.
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Ensemble Learning — Random forests

* The random forest model 1s a form of decision tree bagging in which we take
extra steps to make the ensemble of K trees more diverse.

* The key 1dea 1s to randomly vary the attribute choices (rather than the training
examples). At each split point in constructing the tree, we select a random
sampling of attributes, and then compute which of those gives the highest
information gain.

* Further improvement: for each selected attribute, we randomly sample several
candidate values from a uniform distribution. Then we select the value that has

the highest information gain.
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Ensemble Learning — Random forests

* All the hyperparameters can be trained by cross-validation: the
number of trees K, the number of examples used by each tree NN,
the number of attributes used at each split point, and the number
of random split points tried.

* Random forests are resistant to overfitting.

* Breiman (2001) gives a mathematical proof that (in almost all

cases) as you add more trees to the forest, the error converges.
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Ensemble Learning — Stacking

* The technique of stacked generalization (or stacking for short) combines
multiple base models from different model classes trained on the same data.
* For example, given the restaurant data set, the first row is:
x,=Yes, No, No, Yes, Some, $$$, No, Yes, French, 0-10; y,=Yes
* We use the training set to train three separate base models — SVM, logistic
regression, and a decision tree.
* In the next step we take the validation data set and augment each row with the

predictions made from the three base models, giving us rows look like this

X,=Yes, No, No, Yes, Full, $, No, No, Thai, 30-60, Yes, No, No; y,=No
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Ensemble Learning — Stacking

* We use this validation set to train a new ensemble model, let’s say a logistic
regression model. The ensemble model can use the predictions and the original
data as it sees fit.

» This method is called “stacking” because it can be thought of as a layer of base
models with an ensemble model stacked above it, operating on the output of
the base models.

» Stacking reduces bias, and usually leads to performance that is better than any

of the individual base models.
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Ensemble Learning -- Boosting

* The most widely used ensemble method is called boosting.

* To understand the idea, we need first to explain the 1dea of a weighted
training set. In such a training set, each example has an associated weight
w; = 0. The higher the weight of an example, the higher is the importance
attached to 1t during the learning of a hypothesis.
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Ensemble Learning -- Boosting

* Boosting starts with w; =1 for all the examples (i.e., a normal training set).
From this set, it generates the first hypothesis, /,. This hypothesis will classify
some of the training examples correctly and some incorrectly. We would like
the next hypothesis to do better on the misclassified examples, so we increase
their weights while decreasing the weights of the correctly classified examples.

* From this new weighted training set, we generate hypothesis /4,. The process
continues in this way until we have generated K hypotheses. The final
ensemble hypothesis is a weighted-majority combination of all the K
hypotheses, each weighted according to how well it performed on the training

set.
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Ensemble Learning -- Boosting

mm ./ &=

[ ]

] [ | [ | [ |
IR A

[
h

Figure 18.33 How the boosting algorithm works. Each shaded rectangle corresponds to
an example; the height of the rectangle corresponds to the weight. The checks and crosses

indicate whether the example was classified correctly by the current hypothesis. The size of
the decision tree indicates the weight of that hypothesis in the final ensemble.




Ensemble Learning -- Boosting

 ADABOOST has a very important property: if the input learning algorithm L
1s a weak learning algorithm—which means that L always returns a
hypothesis with accuracy on the training set that 1s slightly better than random
guessing —then ADABOOST will return a hypothesis that classifies the
training data perfectly for large enough K.
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Ensemble Learning -- Boosting

* Let us see how well boosting does on the restaurant data. We will choose as
our original hypothesis space the class of decision stumps, which are decision
trees with just one test, at the root.

* The lower curve in Figure 18.35(a) shows that unboosted decision stumps are
not very effective for this data set, reaching a prediction performance of only
81% on 100 training examples. When boosting is applied (with K = 5), the

performance 1s better, reaching 93% after 100 examples.
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Ensemble Learning -- Boosting
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Figure 18.35  (a) Graph showing the performance of boosted decision stumps with K =5

versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the
training set and the test set as a function of K, the number of hypotheses in the ensemble.
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,
i.e., after the ensemble fits the data exactly.




Ensemble Learning — Online learning

* So far, everything we have done in this chapter has relied on the assumption
that the data are 1.1.d. (independent and identically distributed). On the one
hand, that is a sensible assumption: if the future bears no resemblance to the
past, then how can we predict anything? On the other hand, it is too strong an
assumption: it 1s rare that our inputs have captured all the information that

would make the future truly independent of the past.
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Ensemble Learning — Online learning

* What to do when the data are not 1.1.d.?

* In this case, 1t matters when we make a prediction, so we will adopt the
perspective called online learning: an agent receives an input x; from nature,
predicts the corresponding y;, and then is told the correct answer. Then the

rocess repeats with x..,. and so on.
]+19
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Ensemble Learning — Online learning

* Let us consider the situation where our input consists of predictions from a
panel of experts. For example, each day a set of K pundits (&8 &) predicts
whether the stock market will go up or down, and our task is to pool those
predictions and make our own. One way to do this is to keep track of how
well each expert performs, and choose to believe them 1n proportion to their
past performance. This is called the randomized weighted majority

algorithm.
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Ensemble Learning — Online learning

* We can describe it more formally:

Initialize a set of weights {w1,...,wk} all to 1.

Receive the predictions {491, ...,k } from the experts.

Randomly choose an expert k*, in proportion to its weight: P (k) = wy /(D wi').
Predict «.

. Receive the correct answer y.

A

6. For each expert k such that 35 # vy, update wg, < Bwy

Here (3 is a number, 0 < 3 < 1, that tells how much to penalize an expert for each mistake.
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Ensemble Learning — Online learning

* Online learning is helpful when the data may be changing rapidly over time. It
1s also useful for applications that involve a large collection of data that 1s
constantly growing, even 1f changes are gradual.

* For most learning algorithms based on minimizing loss, there is an online

version based on minimizing regret.
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Developing Machine Learning Systems

* Problem formulation

* You need to specify a loss function, which should be correlated with your
true goals.

*  When you have decomposed your problems into parts, you may find that
there are multiple components that can be handled by old-fashioned
software engineering, not machine learning.

* Part of problem formulation is deciding whether you are dealing with

supervised, unsupervised, or reinforcement learning.
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Developing Machine Learning Systems

* Data collection, assessment, and management

* Every machine learning project needs data.

* Freely available datasets, crowdsourcing

* When data are limited, data augmentation can help.

* Unbalanced classes problem — undersample or over-sample. You can use
a weighted loss function that gives a larger penalty to missing a
fraudulent case.

* You should carefully consider outliers in your data. An outlier is a data

point that is far from other points.
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Developing Machine Learning Systems

* Feature engineering
* You may preprocess the data to make it easier to digest.
* (Quantization, normalization, one-hot encoding
* You can also introduce new attributes based on your domain knowledge
* Exploratory data analysis and visualization
* Cluster your data and then visualize a prototype data point at the center of
each cluster.

» Itis also helpful to detect outliers that are far from the prototypes
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Developing Machine Learning Systems

* Exploratory data analysis and visualization

* t-distributed stochastic neighbor embedding (t-SNE)

.
©CoOo~NOOO S WN-=2O0

Figure 19.27 A two-dimensional t-SNE map of the MNIST data set, a collection of 60,000
images of handwritten digits, each 28 x 28 pixels and thus 784 dimensions. You can clearly

= . %\ W&, see clusters for the ten digits, with a few confusions in each cluster; for example the top
é‘l 32D 7@1 3 cluster is for the digit 0, but within the bounds of the cluster are a few data points representing
wni National Cheng Kung University the digits 3 and 6. The t-SNE algorithm finds a representation that accentuates the differences
between clusters.




Developing Machine Learning Systems

* Model selection and training
* There 1s no guaranteed way to pick the best model class, but there are
some rough guidelines.
* Random forests are good when there are a lot of categorical features and
you believe that many of them may be irrelevant.
* Nonparameteric methods are good when you have a lot of data and no
prior knowledge.

* Logistic regression does well when the data are linearly separable.
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Developing Machine Learning Systems

* Model selection and training
* SVMs are good to try when the data set 1s not too large.
* Problems dealing with pattern recognition are most often approached

with deep neural networks.

* Choosing hyperparameters can be done with a combination of experience
and search. As you run more experiments you will get ideas for different

models to try.
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Developing Machine Learning Systems

* Trust, interpretability, and explainability

* Doing well on metric is a necessary but not sufficient condition for your
to trust your model.

* Interpretability: We say a machine learning model is interpretable if you
can mspect the actual model and understand why it got a particular
answer for a given input.

* Explainability: An explainable model is one that can help you

understand “why was this output produced for this input?”
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