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• An agent is learning if it improves its performance on future tasks after 

making observations about the world. 

• From a collection of input–output pairs, learn a function that predicts the 

output for new inputs. 

• Why would we want an agent to learn?

• (1) the designers cannot anticipate all possible situations

• (2) the designers cannot anticipate all changes over time

• (3) sometimes human programmers have no idea how to program a 

solution themselves
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• The function h is a hypothesis. Learning is a search through the space of 

possible hypotheses for one that will perform well, even on new examples 

beyond the training set. 

• To measure the accuracy of a hypothesis we give it a test set of examples that 

are distinct from the training set. 

Supervised Learning
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• When the output y is one of a finite set of values, the learning problem is 

called classification. When y is a number, the learning problem is called 

regression.

• Fitting a function of a single variable to some data points. 

Supervised Learning
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• Figure 18.1(b) shows a high-degree polynomial that is also consistent with the 

same data. This illustrates a fundamental problem in inductive learning: how 

do we choose from among multiple consistent hypotheses? One answer is to 

prefer the simplest hypothesis consistent with the data. This principle is called 

Ockham’s razor. 

• Figure 18.1(c) shows a second data set. There is no consistent straight line for 

this data set; in fact, it requires a degree-6 polynomial for an exact fit. A 

straight line that is not consistent with any of the data points, but might 

generalize fairly well for unseen values of x, is also shown in (c). 

Supervised Learning
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• In general, there is a tradeoff between complex hypotheses that 

fit the training data well and simpler hypotheses that may 

generalize better. In Figure 18.1(d) we expand the hypothesis 

space H to allow polynomials over both x and sin(x), and find 

that the data in (c) can be fitted exactly by a simple function of 

the form ax + b + c sin(x). This shows the importance of the 

choice of hypothesis space. 
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• Supervised learning can be done by choosing the hypothesis h*

that is most probable given the data:

By Bayes’ rule this is equivalent to

Then we can say that the prior probability P(h) is high for a 

degree-1 or -2 polynomial, lower for a degree-7 polynomial. 

Supervised Learning
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• There is a tradeoff between the expressiveness of a hypothesis 

space and the complexity of finding a good hypothesis within that 

space. 

• Fitting a straight line to data is an easy computation; fitting high-

degree polynomials is somewhat harder. 

• Most work on learning has focused on simple representations.

Supervised Learning
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• We will build a decision tree to decide whether to wait for a table at a 

restaurant. The aim here is to learn a definition for the goal predicate WillWait. 

Learning Decision Trees
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• An example for a Boolean decision tree consists of an (x, y) pair, where x is a 

vector of values for the input attributes, and y is a single Boolean output value. 

A training set of 12 examples is shown in Figure 18.3. The positive examples 

are the ones in which the goal WillWait is true (x1, x3, . . .); the negative 

examples are the ones in which it is false (x2, x5, . . .). 

Learning Decision Trees
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• We want a tree that is consistent with the examples and is as small as possible. 

• Always test the most important attribute first. By “most important attribute,” 

we mean the one that makes the most difference to the classification of an 

example. 

• Figure 18.4(a) shows that Type is a poor attribute, because it leaves us with 

four possible outcomes, each of which has the same number of positive as 

negative examples. 

Learning Decision Trees
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• In (b), we see that Patrons is a fairly important attribute, because if the value is 

None or Some, then we are left with example sets for which we can answer 

definitively (No and Yes, respectively). If the value is Full, we are left with a 

mixed set of examples. 

• In general, after the first attribute test splits up the examples, each outcome is a 

new decision tree learning problem in itself, with fewer examples and one less 

attribute. 

Learning Decision Trees
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• Choosing attribute tests

• Entropy is a measure of the uncertainty of a random variable; acquisition 

of information corresponds to a reduction in entropy. A random variable 

with only one value—a coin that always comes up heads—has no 

uncertainty and thus its entropy is defined as zero; thus, we gain no 

information by observing its value. 

• A flip of a fair coin is equally likely to come up heads or tails, 0 or 1, and 

we will soon show that this counts as “1 bit” of entropy. The roll of a fair 

four-sided die has 2 bits of entropy, because it takes two bits to describe 

one of four equally probable choices. 

Learning Decision Trees
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• Choosing attribute tests

• The entropy of a random variable V with values vk, each with probability 

P(vk), is defined as

Learning Decision Trees
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• Choosing attribute tests

• The entropy of a Boolean random variable that is true with probability q:

• If a training set contains p positive examples and n negative examples, 

then the entropy of the goal attribute on the whole set is

• The restaurant training set in Figure 18.3 has p = n = 6, so the 

corresponding entropy is B(0.5) or exactly 1 bit. A test on a single 

attribute A might give us only part of this 1 bit. We can measure exactly 

how much by looking at the entropy remaining after the attribute test.



• Choosing attribute tests

• An attribute A with d distinct values divides the training set E into subsets 

E1, . . . , Ed. Each subset Ek has pk positive examples and nk negative 

examples, so if we go along that branch, we will need an additional 

B(pk/(pk + nk)) bits of information to answer the question. A randomly 

chosen example from the training set has the kth value for the attribute 

with probability (pk + nk)/(p + n), so the expected entropy remaining after 

testing attribute A is
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• Choosing attribute tests

• The information gain from the attribute test on A is the expected 

reduction in entropy:
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• In many areas of industry and commerce, decision trees are usually the first 

method tried when a classification method is to be extracted from a data set. 

One important property of decision trees is that it is possible for a human to 

understand the reason for the output of the learning algorithm. This is a 

property not shared by some other representations, such as neural networks.

Learning Decision Trees
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• We want to learn a hypothesis that fits the future data best. To make that 

precise we need to define “future data” and “best.” We make the stationarity 

assumption: that there is a probability distribution over examples that remains 

stationary over time. 

• Each example data point (before we see it) is a random variable Ej whose 

observed value ej = (xj, yj) is sampled from that distribution, and is 

independent of the previous examples: 

and each example has an identical prior probability distribution:

Evaluating and Choosing the Best Hypothesis

30



• Examples that satisfy these assumptions are called independent and 

identically distributed or i.i.d.. 

• The next step is to define “best fit.” We define the error rate of a hypothesis as 

the proportion of mistakes it makes—the proportion of times that                   

for an (x, y) example. A hypothesis h has a low error rate on the training set 

does not mean that it will generalize well. 

• Randomly split the available data into a training set from which the 

learning algorithm produces h and a test set on which the accuracy of h is 

evaluated. 
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• k-fold cross-validation: First we split the data into k equal subsets. We then 

perform k rounds of learning; on each round 1/k of the data is held out as a test 

set and the remaining examples are used as training data. The average test set 

score of the k rounds should then be a better estimate than a single score. 

• The extreme is k = n, also known as leave-one-out cross-validation or 

LOOCV. 

Evaluating and Choosing the Best Hypothesis
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• Users frequently invalidate their results by inadvertently peeking at the test 

data. A learning algorithm has various “knobs” (旋鈕) that can be twiddled to 

tune its behavior. The researcher generates hypotheses for various different 

settings of the knobs, measures their error rates on the test set, and reports the 

error rate of the best hypothesis. Alas, peeking has occurred!

• The reason is that the hypothesis was selected on the basis of its test set error 

rate, so information about the test set has leaked into the learning algorithm.

Evaluating and Choosing the Best Hypothesis
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• Peeking is a consequence of using test-set performance to both choose a 

hypothesis and evaluate it. The way to avoid this is to really hold the test set 

out—lock it away until you are completely done with learning. 

• If the test set is locked away, but you still want to measure performance on 

unseen data as a way of selecting a good hypothesis, then divide the available 

data (without the test set) into a training set and a validation set.

Evaluating and Choosing the Best Hypothesis
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• Model selection: Complexity versus goodness of fit

• In the polynomial fitting problem, choosing the degree of the polynomial 

is an instance of the problem of model selection.

• Think of the task of finding the best hypothesis as two tasks: model 

selection defines the hypothesis space and then optimization finds the 

best hypothesis within that space. 

• Usually we start with the smallest, simplest models (which probably 

underfit the data), and iterate, considering more complex models at each 

step, until the models start to overfit.
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• Model selection: Complexity versus goodness of fit

Evaluating and Choosing the Best Hypothesis
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• From error rates to loss

• In machine learning it is traditional to express utilities by means of a loss 

function. 

• The loss function                  is defined as the amount of utility lost by 

predicting                  when the correct answer is                :

This is the most general formulation of the loss function. Often a 

simplified version is used,             . 
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• From error rates to loss

• Two functions that implement that idea are the absolute value of the 

difference (called the L1 loss), and the square of the difference (called the 

L2 loss). 

• We can also use the L0/1 loss function, which has a loss of 1 for an 

incorrect answer and is appropriate for discrete-valued outputs:

Evaluating and Choosing the Best Hypothesis
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• From error rates to loss

• The learning agent can theoretically maximize its expected utility by 

choosing the hypothesis that minimizes expected loss over all input–

output pairs it will see. 

• It is meaningless to talk about this expectation without defining a prior 

probability distribution, P(X, Y) over examples. Let      be the set of all 

possible input–output examples. Then the expected generalization loss for 

a hypothesis h (with respect to loss function L) is 

Evaluating and Choosing the Best Hypothesis

39



• From error rates to loss

• The best hypothesis, h*, is the one with the minimum expected 

generalization loss:

• Because P(x, y) is not known, the learning agent can only estimate

generalization loss with empirical loss on a set of examples, E: 

Evaluating and Choosing the Best Hypothesis
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• Regularization

• Search for a hypothesis that directly minimizes the weighted sum of 

empirical loss and the complexity of the hypothesis, which we will call 

the total cost: 

We select the value of λ that gives us the best validation set score.

• This process of explicitly penalizing complex hypotheses is called 

regularization. 

Evaluating and Choosing the Best Hypothesis
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• Univariate linear regression

• A univariate linear function (a straight line) with input x and output y has 

the form                        , where w0 and w1 are real-valued coefficients 

(weights) to be learned. 

• We’ll define w to be the vector [w0, w1], and define

• The task of finding the hw that best fits these data is called linear 

regression. 

Regression and Classification with Linear 

Models
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• Univariate linear regression

Regression and Classification with Linear 

Models
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• Univariate linear regression

• To fit a line to the data, it is traditional to use the squared loss function, L2, 

summed over all the training examples:



Regression and Classification with Linear 

Models

45

• Univariate linear regression

• Many forms of learning involve adjusting weights to minimize a loss. 

Consider the weight space—the space defined by all possible settings of 

the weights. 

• For univariate linear regression, the weight space defined by w0 and w1 is 

two-dimensional, so we can graph the loss as a function of w0 and w1 in a 

3D plot. 
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• Univariate linear regression

• To go beyond linear models, we will need to face the fact that the 

equations defining minimum loss will often have no closed-form solution.

• Such problems can be addressed by a hill-climbing algorithm that follows 

the gradient of the function to be optimized.
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• Univariate linear regression

• The parameter α, which we called the step size in Section 4.2, is usually 

called the learning rate when we are trying to minimize loss in a 

learning problem. It can be a fixed constant, or it can decay over time as 

the learning process proceeds.
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• Univariate linear regression
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• Univariate linear regression

• For N training examples, we want to minimize the sum of the individual 

losses for each example. The derivative of a sum is the sum of the 

derivatives, so we have: 

These updates constitute the batch gradient descent learning rule for 

univariate linear regression.
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• Univariate linear regression

• Stochastic gradient descent (SGD): It randomly selects a small number 

of training examples at each time step, and updates according to Equation 

(18.5). 

• SGD is widely applied to models other than linear regression, in particular 

neural networks.
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• Multivariate linear regression

• We can easily extend to multivariate linear regression problems, in 

which each example xj is an n-element vector. 

• Then h is simply the dot product of the weights and the input vector
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• Multivariate linear regression

• The best vector of weights, w*, minimizes squared-error loss over the 

examples:

• Gradient descent will reach the (unique) minimum of the loss function; 

the update equation for each weight wi is
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• Multivariate linear regression

• It is common to use regularization on multivariate linear functions to 

avoid overfitting. Recall that with regularization we minimize the total 

cost of a hypothesis, counting both the empirical loss and the complexity 

of the hypothesis:
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• Multivariate linear regression

• For linear functions the complexity can be specified as a function of the 

weights. 

• With q = 1 we have L1 regularization, which minimizes the sum of the 

absolute values; with q = 2, L2 regularization minimizes the sum of 

squares. Which regularization function should you pick? That depends on 

the specific problem, but L1 regularization has an important advantage: it 

tends to produce a sparse model.
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• Linear classifiers with a hard threshold

• Linear functions can be used to do classification as well as regression. 

• Given these training data, the task of classification is to learn a hypothesis 

h that will take new (x1 , x2 ) points and return either 0 for earthquakes or 

1 for explosions.
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• Linear classifiers with a hard threshold
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• Linear classifiers with a hard threshold

• A decision boundary is a line (or a surface, in higher dimensions) that 

separates the two classes. In Figure 18.15(a), the decision boundary is a 

straight line. A linear decision boundary is called a linear separator and 

data that admit such a separator are called linearly separable. 
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• Linear classifiers with a hard threshold

• Alternatively, we can think of h as the result of passing the linear function 

through a threshold function:

• There is a simple weight update rule that converges to a solution provided 

the data are linearly separable. For a single example (x, y), we have

which is essentially identical to the update rule for linear regression. This 

rule is called the perceptron learning rule. 

(18.7)
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• Linear classifiers with a hard threshold
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• The perceptron rule may not converge to a stable solution for fixed learning 

rate. 
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• Linear classification with logistic regression

• The linear classifier always announces a completely confident prediction 

of 1 or 0, even for examples that are very close to the boundary; in many 

situations, we really need more gradated predictions. 

• All of these issues can be resolved to a large extent by softening the 

threshold function— approximating the hard threshold with a continuous, 

differentiable function.

• The logistic function
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• Linear classification with logistic regression
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• Linear classification with logistic regression

• With the logistic function replacing the threshold function, we now have

An example of such a hypothesis for the two-input earthquake/explosion 

problem is shown in Figure 18.17(c). 

• The process of fitting the weights of this model to minimize loss on a data 

set is called logistic regression. 
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• Linear classification with logistic regression
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• Linear classification with logistic regression

P
ro

p
o

rt
io

n
 c

o
rr

e
c
t

P
ro

p
o

rt
io

n
 c

o
rr

e
c
t

P
ro

p
o

rt
io

n
 c

o
rr

e
c
t



• Linear regression use the training data to estimate a fixed set of parameters w. 

That defines our hypothesis hw(x), and at that point we can throw away the 

training data, because they are all summarized by w. A learning model that 

summarizes data with a set of parameters of fixed size is called a parametric 

model. 

• A nonparametric model is one that cannot be characterized by a bounded set 

of parameters. For example, suppose that each hypothesis we generate simply 

retains within itself all of the training examples and uses all of them to predict 

the next example.

Nonparametric Models
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• Nearest neighbor models

• Given a query xq , find the k examples that are nearest to xq. This is called 

k-nearest neighbors lookup. We’ll use the notation NN(k, xq) to denote the 

set of k nearest neighbors. 

• To do classification, first find NN(k, xq), then take the plurality vote of the 

neighbors (which is the majority vote in the case of binary classification). 

To avoid ties, k is always chosen to be an odd number. 

• To do regression, we can take the mean or median of the k neighbors, or 

we can solve a linear regression problem on the neighbors.

Nonparametric Models
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• Nearest neighbor models

Nonparametric Models
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• Nearest neighbor models

• Nonparametric methods are still subject to underfitting and overfitting, 

just like parametric methods. In this case 1-nearest neighbors is overfitting; 

it reacts too much to the black outlier in the upper right and the white 

outlier at (5.4, 3.7). The 5-nearest-neighbors decision boundary is good; 

higher k would underfit. As usual, cross-validation can be used to select 

the best value of k. 

Nonparametric Models
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• Nearest neighbor models

• The word “nearest” implies a distance metric. How do we measure the 

distance from a query point xq to an example point xj? Typically, distances 

are measured with a Minkowski distance or Lp norm, defined as

With p = 2 this is Euclidean distance and with p = 1 it is Manhattan 

distance. 

• With Boolean attribute values, the number of attributes on which the two 

points differ is called the Hamming distance. 

Nonparametric Models
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• Nearest neighbor models

• The total distance will be affected by a change in scale in any dimension. 

If we change dimension i from centimeters to miles while keeping the 

other dimensions the same, we’ll get different nearest neighbors. 

• It is common to apply normalization to the measurements in each 

dimension. One simple approach is to compute the mean μi and standard 

deviation σi of the values in each dimension, and rescale them so that xj,i

becomes (xj,i − μi)/σi. 

• A more complex metric known as the Mahalanobis distance takes into 

account the covariance between dimensions.

Nonparametric Models
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• Curse of dimensionality

• In low-dimensional spaces with plenty of data, nearest neighbors works 

very well. However, it’s not in high-dimensional spaces! 

• Consider k-nearest-neighbors on a data set of N points uniformly 

distributed throughout the interior of an n-dimensional unit hypercube. 

The k-neighborhood of a point is the smallest hypercube that contains the 

k-nearest neighbors. Let        be the average side length of a neighborhood. 

Then the volume of the neighborhood (which contains k points) is        and 

the volume of the full cube (which contains N points) is 1. So, on 

average,                  . Taking nth roots of both sides we get                       .

Nonparametric Models
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• Curse of dimensionality

• To be concrete, let k=10 and N=1,000,000. In two dimensions (n=2; a unit 

square), the average neighborhood has                   , a small fraction of the 

unit square, and in 3 dimensions      is just 2% of the edge length of the 

unit cube. But by the time we get to 17 dimensions,      is half the edge 

length of the unit hypercube, and in 200 dimensions it is 94%. This 

problem has been called the curse of dimensionality.

Nonparametric Models
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• Finding nearest neighbors with k-d trees

• A balanced binary tree over data with an arbitrary number of dimensions 

is called a k-d tree, for k-dimensional tree. 

• To construct a k-d tree, we start with a set of examples and at the root 

node we split them along the ith dimension by testing whether xi ≤ m. We 

chose the value m to be the median of the examples along the ith

dimension; thus half the examples will be in the left branch of the tree and 

half in the right. We then recursively make a tree for the left and right sets 

of examples, stopping when there are fewer than two examples left. 

Nonparametric Models
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• Finding nearest neighbors with k-d trees

• k-d trees are appropriate only when there are many more examples than 

dimensions, preferably at least 2n examples. Thus, k-d trees work well 

with up to 10 dimensions with thousands of examples or up to 20 

dimensions with millions of examples. If we don’t have enough examples, 

lookup is no faster than a linear scan of the entire data set.

Nonparametric Models
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• Locality-sensitive hashing

• Hash tables have the potential to provide even faster lookup than binary 

trees. Hash codes randomly distribute values among the bins, but we want 

to have near points grouped together in the same bin; we want a locality-

sensitive hash (LSH). 

Nonparametric Models

76



• Locality-sensitive hashing

• Approximate near-neighbors problem: Given a data set of example 

points and a query point xq, find, with high probability, an example point 

(or points) that is near xq. 

• To be more precise, we require that if there is a point xj that is within a 

radius r of xq, then with high probability the algorithm will find a point xj′

that is within distance cr of xq. If there is no point within radius r then the 

algorithm is allowed to report failure. The values of c and “high 

probability” are parameters of the algorithm.

Nonparametric Models
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• Locality-sensitive hashing

• We need a hash function g(x) that has the property that, for any two 

points xj and xj′ , the probability that they have the same hash code 

is small if their distance is more than cr, and is high if their 

distance is less than r. 

Nonparametric Models
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• Locality-sensitive hashing

• The trick of LSH is to create multiple random projections and combine 

them. A random projection is just a random subset of the bit-string 

representation. We choose      different random projections and create   

hash tables,                                    . We then enter all the examples into 

each hash table. Then when given a query point xq, we fetch the set of 

points in bin gk(q) for each k, and union these sets together into a set of 

candidate points, C. 

Nonparametric Models
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• Locality-sensitive hashing

• Then we compute the actual distance to xq for each of the points in C and 

return the k closest points. With high probability, each of the points that 

are near to xq will show up in at least one of the bins. 

• With large real-world problems, such as finding the near neighbors in a 

data set of 13 million Web images using 512 dimensions, locality-

sensitive hashing needs to examine only a few thousand images out of 13 

million to find nearest neighbors; a thousand-fold speedup over 

exhaustive or k-d tree approaches. 
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• Nonparametric 

regression
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• Nonparametric regression

• (a) When noise is low, this trivial method is actually not too bad. But 

when the data are noisy, the resulting function is spiky, and does not 

generalize well. 

• (b) k-nearest-neighbors regression (Figure 18.28(b)) improves on 

connect-the-dots. Instead of using just the two examples to the left and 

right of a query point xq, we use the k nearest neighbors (here 3). we have 

the k-nearest-neighbors average: h(x) is the mean value of the k points,  

Nonparametric Models
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• Nonparametric regression

• (c) k-nearest-neighbors linear regression (Figure 18.28(c)) finds the 

best line through the k examples. This does a better job of capturing trends 

at the outliers, but is still discontinuous. 

• (d) Locally weighted regression (Figure 18.28(d)) gives us the 

advantages of nearest neighbors, without the discontinuities. The idea of 

locally weighted regression is that at each query point xq, the examples 

that are close to xq are weighted heavily, and the examples that are farther 

away are weighted less heavily or not at all. The decrease in weight over 

distance is always gradual, not sudden. 

Nonparametric Models
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• Nonparametric regression

• We decide how much to weight each example with a function known as a 

kernel. A kernel function looks like a bump; in Figure 18.29 we see the 

specific kernel used to generate Figure 18.28(d).

Nonparametric Models
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• Nonparametric regression
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• In the early 2000s, the support vector machines (SVM) model class was the 

most popular approach for “off-the-shelf” supervised learning, for when you 

don’t have any specialized prior knowledge about a domain. 

• SVMs construct a maximum margin separator

• SVMs create a linear separating hyperplane, but they have the ability to 

embed the data into a higher-dimensional space, using the so-called 

kernel trick. 

• SVMs are a nonparametric method

Support Vector Machines

86



Support Vector Machines

87



• In Figure 18.30(a), we have a binary classification problem with three 

candidate decision boundaries, each a linear separator. Each of them is 

consistent with all the examples, so from the point of view of 0/1 loss, each 

would be equally good. 

• Logistic regression would find some separating line; the exact location of the 

line depends on all the example points. The key insight of SVMs is that some 

examples are more important than others, and that paying attention to 

them can lead to better generalization.

Support Vector Machines
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• SVMs address this issue: Instead of minimizing expected empirical loss on the 

training data, SVMs attempt to minimize expected generalization loss. 

• We call this separator, shown in Figure 18.30(b) the maximum margin 

separator. The margin is the width of the area bounded by dashed lines in the 

figure—twice the distance from the separator to the nearest example point. 

• How do we find this separator? 

Support Vector Machines
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• The separator is defined as the set of points {x : w · x + b=0}. We could search 

the space of w and b with gradient descent to find the parameters that 

maximize the margin while correctly classifying all the examples.

• We don’t directly solve it, but turns it into the dual representation. The optimal 

solution is found by solving

Support Vector Machines
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• This is a quadratic programming optimization problem. 

• Once we have found the vector α we can get back to w with the 

equation                           , or we can stay in the dual representation.

• There are three important properties of Equation (18.13). First, the expression 

is convex; it has a single global maximum that can be found efficiently. 

Support Vector Machines
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• Second, the data enter the expression only in the form of dot products of pairs 

of points. This second property is also true of the equation for the separator 

itself; once the optimal αj have been calculated, it is

• A final important property is that the weights αj associated with each data 

point are zero except for the support vectors—the points closest to the 

separator. Because there are usually many fewer support vectors than 

examples, SVMs gain some of the advantages of parametric models.

Support Vector Machines
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• What if the examples are not linearly separable? 

Support Vector Machines
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• Clearly, there is no linear separator for Fig. 18.31(a). Now, suppose we map 

each input vector x to a new vector of feature values, F(x). In particular, let us 

use the three features

• Figure 18.31(b) shows the data in the new, three-dimensional space defined by 

the three features; the data are linearly separable in this space! If data are 

mapped into a space of sufficiently high dimension, then they will almost 

always be linearly separable. In general (with some special cases excepted) if 

we have N data points then they will always be separable in spaces of N − 1 

dimensions or more. 

Support Vector Machines
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• Now, we would not usually expect to find a linear separator in the input space 

x, but we can find linear separators in the high-dimensional feature space F(x) 

simply by replacing xj·xk in Equation(18.13) with F(xj)·F(xk). 

• It turns out that F(xj)·F(xk) can often be computed without first computing F

for each point. In our three-dimensional feature space defined by Equation 

(18.15), a little bit of algebra shows that 

(That’s why the √2 is in f3.)
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• The expression (xj·xk)
2 is called a kernel function, and is usually written as 

K(xj,xk). The kernel function can be applied to pairs of input data to evaluate 

dot products in some corresponding feature space. So, we can find linear 

separators in the higher-dimensional feature space F(x) simply by replacing 

xj·xk in Equation (18.13) with a kernel function K(xj,xk). Thus, we can learn in 

the higher-dimensional space, but we compute only kernel functions rather 

than the full list of features for each data point. 

• Other kernel functions: 
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• Kernel trick: Plugging these kernels into Equation (18.13), optimal linear 

separators can be found efficiently in feature spaces with billions of (or, in 

some cases, infinitely many) dimensions. The resulting linear separators, when 

mapped back to the original input space, can correspond to arbitrarily wiggly, 

nonlinear decision boundaries between the positive and negative examples.
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• The idea of ensemble learning methods is to select a collection, or ensemble, 

of hypotheses from the hypothesis space and combine their predictions. 

• For example, during cross-validation we might generate twenty different 

decision trees, and have them vote on the best classification for a new example.

• Consider an ensemble of K = 5 hypotheses and suppose that we combine their 

predictions using simple majority voting. For the ensemble to misclassify a 

new example, at least three of the five hypotheses have to misclassify it. The 

hope is that this is much less likely than a misclassification by a single 

hypothesis.
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• Another way to think about the ensemble idea is as a generic way of enlarging 

the hypothesis space. That is, think of the ensemble itself as a hypothesis and 

the new hypothesis space as the set of all possible ensembles constructable

from hypotheses in the original space. 
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• We generate K distinct training sets by sampling with replacement from the 

original training set. We then run our machine learning algorithm on a training 

set to get hypothesis. Repeat this process K times, getting K different 

hypotheses. For classification, taking the majority vote. For regression, the 

final output is the average 

• Bagging tends to reduce variance and is a standard approach when there is 

limited data or when the base model is seen to be overfitting. 
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• The random forest model is a form of decision tree bagging in which we take 

extra steps to make the ensemble of K trees more diverse. 

• The key idea is to randomly vary the attribute choices (rather than the training 

examples). At each split point in constructing the tree, we select a random 

sampling of attributes, and then compute which of those gives the highest 

information gain. 

• Further improvement: for each selected attribute, we randomly sample several 

candidate values from a uniform distribution. Then we select the value that has 

the highest information gain. 
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• All the hyperparameters can be trained by cross-validation: the 

number of trees K, the number of examples used by each tree N, 

the number of attributes used at each split point, and the number 

of random split points tried. 

• Random forests are resistant to overfitting. 

• Breiman (2001) gives a mathematical proof that (in almost all 

cases) as you add more trees to the forest, the error converges. 
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• The technique of stacked generalization (or stacking for short) combines 

multiple base models from different model classes trained on the same data. 

• For example, given the restaurant data set, the first row is: 

x1=Yes, No, No, Yes, Some, $$$, No, Yes, French, 0-10; y1=Yes

• We use the training set to train three separate base models – SVM, logistic 

regression, and a decision tree. 

• In the next step we take the validation data set and augment each row with the 

predictions made from the three base models, giving us rows look like this

x2=Yes, No, No, Yes, Full, $, No, No, Thai, 30-60, Yes, No, No; y2=No
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• We use this validation set to train a new ensemble model, let’s say a logistic 

regression model. The ensemble model can use the predictions and the original 

data as it sees fit. 

• This method is called “stacking” because it can be thought of as a layer of base 

models with an ensemble model stacked above it, operating on the output of 

the base models. 

• Stacking reduces bias, and usually leads to performance that is better than any 

of the individual base models. 
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• The most widely used ensemble method is called boosting.

• To understand the idea, we need first to explain the idea of a weighted 

training set. In such a training set, each example has an associated weight 

wj ≥ 0. The higher the weight of an example, the higher is the importance 

attached to it during the learning of a hypothesis. 
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• Boosting starts with wj = 1 for all the examples (i.e., a normal training set). 

From this set, it generates the first hypothesis, h1. This hypothesis will classify 

some of the training examples correctly and some incorrectly. We would like 

the next hypothesis to do better on the misclassified examples, so we increase 

their weights while decreasing the weights of the correctly classified examples. 

• From this new weighted training set, we generate hypothesis h2. The process 

continues in this way until we have generated K hypotheses. The final 

ensemble hypothesis is a weighted-majority combination of all the K

hypotheses, each weighted according to how well it performed on the training 

set. 
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• ADABOOST has a very important property: if the input learning algorithm L

is a weak learning algorithm—which means that L always returns a 

hypothesis with accuracy on the training set that is slightly better than random 

guessing —then ADABOOST will return a hypothesis that classifies the 

training data perfectly for large enough K. 
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• Let us see how well boosting does on the restaurant data. We will choose as 

our original hypothesis space the class of decision stumps, which are decision 

trees with just one test, at the root. 

• The lower curve in Figure 18.35(a) shows that unboosted decision stumps are 

not very effective for this data set, reaching a prediction performance of only 

81% on 100 training examples. When boosting is applied (with K = 5), the 

performance is better, reaching 93% after 100 examples. 
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• So far, everything we have done in this chapter has relied on the assumption 

that the data are i.i.d. (independent and identically distributed). On the one 

hand, that is a sensible assumption: if the future bears no resemblance to the 

past, then how can we predict anything? On the other hand, it is too strong an 

assumption: it is rare that our inputs have captured all the information that 

would make the future truly independent of the past. 
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• What to do when the data are not i.i.d.?

• In this case, it matters when we make a prediction, so we will adopt the 

perspective called online learning: an agent receives an input xj from nature, 

predicts the corresponding yj, and then is told the correct answer. Then the 

process repeats with xj+1, and so on. 
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• Let us consider the situation where our input consists of predictions from a 

panel of experts. For example, each day a set of K pundits (權威者) predicts 

whether the stock market will go up or down, and our task is to pool those 

predictions and make our own. One way to do this is to keep track of how 

well each expert performs, and choose to believe them in proportion to their 

past performance. This is called the randomized weighted majority 

algorithm. 
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• We can describe it more formally: 
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• Online learning is helpful when the data may be changing rapidly over time. It 

is also useful for applications that involve a large collection of data that is 

constantly growing, even if changes are gradual. 

• For most learning algorithms based on minimizing loss, there is an online 

version based on minimizing regret. 
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• Problem formulation

• You need to specify a loss function, which should be correlated with your 

true goals. 

• When you have decomposed your problems into parts, you may find that 

there are multiple components that can be handled by old-fashioned 

software engineering, not machine learning. 

• Part of problem formulation is deciding whether you are dealing with 

supervised, unsupervised, or reinforcement learning. 
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• Data collection, assessment, and management

• Every machine learning project needs data. 

• Freely available datasets, crowdsourcing

• When data are limited, data augmentation can help. 

• Unbalanced classes problem – undersample or over-sample. You can use 

a weighted loss function that gives a larger penalty to missing a 

fraudulent case. 

• You should carefully consider outliers in your data. An outlier is a data 

point that is far from other points. 
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• Feature engineering

• You may preprocess the data to make it easier to digest. 

• Quantization, normalization, one-hot encoding

• You can also introduce new attributes based on your domain knowledge

• Exploratory data analysis and visualization

• Cluster your data and then visualize a prototype data point at the center of 

each cluster. 

• It is also helpful to detect outliers that are far from the prototypes
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• Exploratory data analysis and visualization

• t-distributed stochastic neighbor embedding (t-SNE)
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• Model selection and training

• There is no guaranteed way to pick the best model class, but there are 

some rough guidelines. 

• Random forests are good when there are a lot of categorical features and 

you believe that many of them may be irrelevant. 

• Nonparameteric methods are good when you have a lot of data and no 

prior knowledge. 

• Logistic regression does well when the data are linearly separable. 
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• Model selection and training

• SVMs are good to try when the data set is not too large. 

• Problems dealing with pattern recognition are most often approached 

with deep neural networks.

• Choosing hyperparameters can be done with a combination of experience 

and search. As you run more experiments you will get ideas for different 

models to try. 

Developing Machine Learning Systems

121



• Trust, interpretability, and explainability

• Doing well on metric is a necessary but not sufficient condition for your 

to trust your model. 

• Interpretability: We say a machine learning model is interpretable if you 

can inspect the actual model and understand why it got a particular 

answer for a given input. 

• Explainability: An explainable model is one that can help you 

understand “why was this output produced for this input?”
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